第6週

01/25(TH) 気候変動問題の原因:気候変動と経済活動1

      気候変動問題の原因:気候変動と経済活2

第6週、第7週の講義では、気候変動が我々の生活にもたらす影響と対策を議論します。

基本的にIPCCの第6次評価報告書(https://www.data.jma.go.jp/cpdinfo/ipcc/index.html

をテキストに使っています。

01/30(TU) Rでデータサイエンス6:気候変動  [Main]・[授業]

Environment-Climate 

CO2 emissions (metric tons per capita) :EN.ATM.CO2E.PC [Link]

Forest area (% of land area):AG.LND.FRST.ZS [Link]

Renewable electricity output (% of total electricity output):EG.ELC.RNEW.ZS [Link]

Electricity production from oil, gas and coal sources (% of total):EG.ELC.FOSL.ZS [Link]

Electricity production from nuclear sources (% of total):EG.ELC.NUCL.ZS [Link]

IEA: Energy Statistics Data Browser データ元

https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel

内容

df_environment <- WDI(
  indicator = c(co2pcap = "EN.ATM.CO2E.PC",
                forest = "AG.LND.FRST.ZS",
                renewable = "EG.ELC.RNEW.ZS",
                fossil = "EG.ELC.FOSL.ZS",
                nuclea = "EG.ELC.NUCL.ZS"
                ), extra = TRUE)
write_csv(df_environment, "data/environment.csv")
df_environment <- read_csv("data/environment.csv")
Rows: 16758 Columns: 17── Column specification ───────────────────────────────────────────────────
Delimiter: ","
chr  (7): country, iso2c, iso3c, region, capital, income, lending
dbl  (8): year, co2pcap, forest, renewable, fossil, nuclea, longitude, ...
lgl  (1): status
date (1): lastupdated
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
df_environment_long <- df_environment |> 
  pivot_longer(7:11, names_to = "name", values_to = "value")
df_environment_long |> 
  group_by(year, name) |> drop_na(value) |>
  summarize(num = n()) |> arrange(desc(year))
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
df_environment_long |> 
  group_by(year, name) |> drop_na(value) |>
  summarize(num = n()) |> 
  ggplot(aes(year, num, col = name)) + geom_line() +
  labs(title = "各指標の年毎のデータ数", y = "データ数", x = "年")
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.

World Development Indicators: [Link]

df_environment_long |> 
  filter(name %in% c("fossil", "renewable", "nuclea")) |>
  filter(iso2c %in% c("1W", "ZF", "T6")) |> drop_na(value) |>
  ggplot(aes(year, value, col = name, linetype = iso2c)) + geom_line()

LS0tCnRpdGxlOiAiR0VTIDAwMSDmvJTnv5I2IgphdXRob3I6ICJILiBTdXp1a2kiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKLS0tCgojIyDnrKw26YCxCgowMS8yNShUSCnjgIDmsJflgJnlpInli5XllY/poYzjga7ljp/lm6DvvJrmsJflgJnlpInli5XjgajntYzmuIjmtLvli5UxCgrjgIDjgIDjgIDjgIDjgIDjgIDmsJflgJnlpInli5XllY/poYzjga7ljp/lm6DvvJrmsJflgJnlpInli5XjgajntYzmuIjmtLsyCgrnrKw26YCx44CB56ysN+mAseOBruism+e+qeOBp+OBr+OAgeawl+WAmeWkieWLleOBjOaIkeOAheOBrueUn+a0u+OBq+OCguOBn+OCieOBmeW9semfv+OBqOWvvuetluOCkuitsOirluOBl+OBvuOBmeOAggoK5Z+65pys55qE44GrSVBDQ+OBruesrDbmrKHoqZXkvqHloLHlkYrmm7jvvIg8aHR0cHM6Ly93d3cuZGF0YS5qbWEuZ28uanAvY3BkaW5mby9pcGNjL2luZGV4Lmh0bWw+IO+8iQoK44KS44OG44Kt44K544OI44Gr5L2/44Gj44Gm44GE44G+44GZ44CCCgowMS8zMChUVSnjgIBS44Gn44OH44O844K/44K144Kk44Ko44Oz44K5Nu+8muawl+WAmeWkieWLleOAgCBbW01haW5dKGh0dHBzOi8vZHMtc2wuZ2l0aHViLmlvL2ludHJvMnIvZ2VzMDAxL2dlczAwMS1tYWluLm5iLmh0bWwpXeODu1vmjojmpa1dCgpFbnZpcm9ubWVudC1DbGltYXRl44CACgpDTzIgZW1pc3Npb25zIChtZXRyaWMgdG9ucyBwZXIgY2FwaXRhKSDvvJpFTi5BVE0uQ08yRS5QQyBbW0xpbmtdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvci9FTi5BVE0uQ08yRS5QQyldCgpGb3Jlc3QgYXJlYSAoJSBvZiBsYW5kIGFyZWEp77yaQUcuTE5ELkZSU1QuWlMgW1tMaW5rXShodHRwczovL2RhdGEud29ybGRiYW5rLm9yZy9pbmRpY2F0b3IvQUcuTE5ELkZSU1QuWlMpXQoKUmVuZXdhYmxlIGVsZWN0cmljaXR5IG91dHB1dCAoJSBvZiB0b3RhbCBlbGVjdHJpY2l0eSBvdXRwdXQp77yaRUcuRUxDLlJORVcuWlMgW1tMaW5rXShodHRwczovL2RhdGEud29ybGRiYW5rLm9yZy9pbmRpY2F0b3IvRUcuRUxDLlJORVcuWlMpXQoKRWxlY3RyaWNpdHkgcHJvZHVjdGlvbiBmcm9tIG9pbCwgZ2FzIGFuZCBjb2FsIHNvdXJjZXMgKCUgb2YgdG90YWwp77yaRUcuRUxDLkZPU0wuWlMgW1tMaW5rXShodHRwczovL2RhdGEud29ybGRiYW5rLm9yZy9pbmRpY2F0b3IvRUcuRUxDLkZPU0wuWlMpXQoKRWxlY3RyaWNpdHkgcHJvZHVjdGlvbiBmcm9tIG51Y2xlYXIgc291cmNlcyAoJSBvZiB0b3RhbCnvvJpFRy5FTEMuTlVDTC5aUyBbW0xpbmtdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvci9FRy5FTEMuTlVDTC5aUyldCgpJRUE644CARW5lcmd5IFN0YXRpc3RpY3MgRGF0YSBCcm93c2Vy44CA44OH44O844K/5YWDCgo8aHR0cHM6Ly93d3cuaWVhLm9yZy9kYXRhLWFuZC1zdGF0aXN0aWNzL2RhdGEtdG9vbHMvZW5lcmd5LXN0YXRpc3RpY3MtZGF0YS1icm93c2VyP2NvdW50cnk9V09STEQmZnVlbD1FbmVyZ3klMjBzdXBwbHkmaW5kaWNhdG9yPUVsZWNHZW5CeUZ1ZWw+CgojIyDlhoXlrrkKCi0gICBDTzIgZW1pc3Npb25zIChtZXRyaWMgdG9ucyBwZXIgY2FwaXRhKSDvvJpFTi5BVE0uQ08yRS5QQyBbW0xpbmtdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvci9FTi5BVE0uQ08yRS5QQyldCgotICAgRm9yZXN0IGFyZWEgKCUgb2YgbGFuZCBhcmVhKe+8mkFHLkxORC5GUlNULlpTIFtbTGlua10oaHR0cHM6Ly9kYXRhLndvcmxkYmFuay5vcmcvaW5kaWNhdG9yL0FHLkxORC5GUlNULlpTKV0KCi0gICBSZW5ld2FibGUgZWxlY3RyaWNpdHkgb3V0cHV0ICglIG9mIHRvdGFsIGVsZWN0cmljaXR5IG91dHB1dCnvvJpFRy5FTEMuUk5FVy5aUyBbW0xpbmtdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvci9FRy5FTEMuUk5FVy5aUyldCgotICAgRWxlY3RyaWNpdHkgcHJvZHVjdGlvbiBmcm9tIG9pbCwgZ2FzIGFuZCBjb2FsIHNvdXJjZXMgKCUgb2YgdG90YWwp77yaRUcuRUxDLkZPU0wuWlMgW1tMaW5rXShodHRwczovL2RhdGEud29ybGRiYW5rLm9yZy9pbmRpY2F0b3IvRUcuRUxDLkZPU0wuWlMpXQoKLSAgIEVsZWN0cmljaXR5IHByb2R1Y3Rpb24gZnJvbSBudWNsZWFyIHNvdXJjZXMgKCUgb2YgdG90YWwp77yaRUcuRUxDLk5VQ0wuWlMgW1tMaW5rXShodHRwczovL2RhdGEud29ybGRiYW5rLm9yZy9pbmRpY2F0b3IvRUcuRUxDLk5VQ0wuWlMpXQoKYGBge3IgZXZhbD1GQUxTRX0KZGZfZW52aXJvbm1lbnQgPC0gV0RJKAogIGluZGljYXRvciA9IGMoY28ycGNhcCA9ICJFTi5BVE0uQ08yRS5QQyIsCiAgICAgICAgICAgICAgICBmb3Jlc3QgPSAiQUcuTE5ELkZSU1QuWlMiLAogICAgICAgICAgICAgICAgcmVuZXdhYmxlID0gIkVHLkVMQy5STkVXLlpTIiwKICAgICAgICAgICAgICAgIGZvc3NpbCA9ICJFRy5FTEMuRk9TTC5aUyIsCiAgICAgICAgICAgICAgICBudWNsZWEgPSAiRUcuRUxDLk5VQ0wuWlMiCiAgICAgICAgICAgICAgICApLCBleHRyYSA9IFRSVUUpCmBgYAoKYGBge3IgZXZhbD1GQUxTRX0Kd3JpdGVfY3N2KGRmX2Vudmlyb25tZW50LCAiZGF0YS9lbnZpcm9ubWVudC5jc3YiKQpgYGAKCmBgYHtyfQpkZl9lbnZpcm9ubWVudCA8LSByZWFkX2NzdigiZGF0YS9lbnZpcm9ubWVudC5jc3YiKQpgYGAKCmBgYHtyfQpkZl9lbnZpcm9ubWVudF9sb25nIDwtIGRmX2Vudmlyb25tZW50IHw+IAogIHBpdm90X2xvbmdlcig3OjExLCBuYW1lc190byA9ICJuYW1lIiwgdmFsdWVzX3RvID0gInZhbHVlIikKYGBgCgpgYGB7cn0KZGZfZW52aXJvbm1lbnRfbG9uZyB8PiAKICBncm91cF9ieSh5ZWFyLCBuYW1lKSB8PiBkcm9wX25hKHZhbHVlKSB8PgogIHN1bW1hcml6ZShudW0gPSBuKCkpIHw+IGFycmFuZ2UoZGVzYyh5ZWFyKSkKYGBgCgpgYGB7cn0KZGZfZW52aXJvbm1lbnRfbG9uZyB8PiAKICBncm91cF9ieSh5ZWFyLCBuYW1lKSB8PiBkcm9wX25hKHZhbHVlKSB8PgogIHN1bW1hcml6ZShudW0gPSBuKCkpIHw+IAogIGdncGxvdChhZXMoeWVhciwgbnVtLCBjb2wgPSBuYW1lKSkgKyBnZW9tX2xpbmUoKSArCiAgbGFicyh0aXRsZSA9ICLlkITmjIfmqJnjga7lubTmr47jga7jg4fjg7zjgr/mlbAiLCB5ID0gIuODh+ODvOOCv+aVsCIsIHggPSAi5bm0IikKYGBgCgpXb3JsZCBEZXZlbG9wbWVudCBJbmRpY2F0b3JzOiBbW0xpbmtdKGh0dHBzOi8vZGF0YWNhdGFsb2cud29ybGRiYW5rLm9yZy9zZWFyY2gvZGF0YXNldC8wMDM3NzEyL1dvcmxkLURldmVsb3BtZW50LUluZGljYXRvcnMpXQoKYGBge3J9CmRmX2Vudmlyb25tZW50X2xvbmcgfD4gCiAgZmlsdGVyKG5hbWUgJWluJSBjKCJmb3NzaWwiLCAicmVuZXdhYmxlIiwgIm51Y2xlYSIpKSB8PgogIGZpbHRlcihpc28yYyAlaW4lIGMoIjFXIiwgIlpGIiwgIlQ2IikpIHw+IGRyb3BfbmEodmFsdWUpIHw+CiAgZ2dwbG90KGFlcyh5ZWFyLCB2YWx1ZSwgY29sID0gbmFtZSwgbGluZXR5cGUgPSBpc28yYykpICsgZ2VvbV9saW5lKCkKYGBgCg==